skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Shuo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 18, 2027
  2. Abstract Accurate mesh stiffness calculation is crucial for developing reliable dynamic models and analyzing vibratory behavior in hypoid gears. Current studies often use a hypoid gear pair, incorporating the misalignment effects of the hypoid gear system model, as a substitute for the full hypoid gear system model to reduce simulation costs. However, this simplification overlooks the boundary problem, particularly the influence of housing on the hypoid gear system. This discrepancy can lead to deviations in mesh stiffness calculation and affect the accuracy of dynamic response predictions. To address this issue, we established a three-dimensional static mesh model to calculate the mesh stiffness under different boundary conditions, i.e., the gear pair model constrained at the base and the gear system model constrained at the housing, based on finite element results. Then, we introduce a 14-degree-of-freedom dynamic model to examine the influence of mesh stiffness differences on system dynamics. Finally, a numerical case study evaluates key factors, including unloaded and loaded transmission error, mesh points, line of action, and static mesh force, to assess their impact on mesh stiffness and the resultant impact on dynamic behavior. The findings provide insights into the selection of an appropriate calculation model for accurate gear design and simulation. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  3. Free, publicly-accessible full text available December 1, 2026
  4. Free, publicly-accessible full text available October 1, 2026
  5. Free, publicly-accessible full text available December 1, 2026
  6. Abstract How the brain encodes, recognizes, and memorizes general visual objects is a fundamental question in neuroscience. Here, we investigated the neural processes underlying visual object perception and memory by recording from 3173 single neurons in the human amygdala and hippocampus across four experiments. We employed both passive-viewing and recognition memory tasks involving a diverse range of naturalistic object stimuli. Our findings reveal a region-based feature code for general objects, where neurons exhibit receptive fields in the high-level visual feature space. This code can be validated by independent new stimuli and replicated across all experiments, including fixation-based analyses with large natural scenes. This region code explains the long-standing visual category selectivity, preferentially enhances memory of encoded stimuli, predicts memory performance, encodes image memorability, and exhibits intricate interplay with memory contexts. Together, region-based feature coding provides an important mechanism for visual object processing in the human brain. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  7. Free, publicly-accessible full text available May 1, 2026
  8. Free, publicly-accessible full text available April 14, 2026
  9. Srinivasan, Srikanth (Ed.)
    Information complexity is one of the most powerful techniques to prove information-theoretical lower bounds, in which Shannon entropy plays a central role. Though Shannon entropy has some convenient properties, such as the chain rule, it still has inherent limitations. One of the most notable barriers is the square-root loss, which appears in the square-root gap between entropy gaps and statistical distances, e.g., Pinsker’s inequality. To bypass this barrier, we introduce a new method based on min-entropy analysis. Building on this new method, we prove the following results. - An Ω(N^{∑_i α_i - max_i {α_i}}/k) randomized communication lower bound of the k-party set-intersection problem where the i-th party holds a random set of size ≈ N^{1-α_i}. - A tight Ω(n/k) randomized lower bound of the k-party Tree Pointer Jumping problems, improving an Ω(n/k²) lower bound by Chakrabarti, Cormode, and McGregor (STOC 08). - An Ω(n/k+√n) lower bound of the Chained Index problem, improving an Ω(n/k²) lower bound by Cormode, Dark, and Konrad (ICALP 19). Since these problems served as hard problems for numerous applications in streaming lower bounds and cryptography, our new lower bounds directly improve these streaming lower bounds and cryptography lower bounds. On the technical side, min-entropy does not have nice properties such as the chain rule. To address this issue, we enhance the structure-vs-pseudorandomness decomposition used by Göös, Pitassi, and Watson (FOCS 17) and Yang and Zhang (STOC 24); both papers used this decomposition to prove communication lower bounds. In this paper, we give a new breath to this method in the multi-party setting, presenting a new toolkit for proving multi-party communication lower bounds. 
    more » « less
  10. Abstract Neurotypical (NT) individuals and individuals with autism spectrum disorder (ASD) make different judgments of social traits from others’ faces; they also exhibit different social emotional responses in social interactions. A common hypothesis is that the differences in face perception in ASD compared with NT is related to distinct social behaviors. To test this hypothesis, we combined a face trait judgment task with a novel interpersonal transgression task that induces measures social emotions and behaviors. ASD and neurotypical participants viewed a large set of naturalistic facial stimuli while judging them on a comprehensive set of social traits (e.g., warm, charismatic, critical). They also completed an interpersonal transgression task where their responsibility in causing an unpleasant outcome to a social partner was manipulated. The purpose of the latter task was to measure participants’ emotional (e.g., guilt) and behavioral (e.g., compensation) responses to interpersonal transgression. We found that, compared with neurotypical participants, ASD participants’ self-reported guilt and compensation tendency was less sensitive to our responsibility manipulation. Importantly, ASD participants and neurotypical participants showed distinct associations between self-reported guilt and judgments of criticalness from others' faces. These findings reveal a novel link between perception of social traits and social emotional responses in ASD. 
    more » « less